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Abstract: In recent years, practical Wyner–Ziv (WZ) video coding solutions have been proposed with 

promising results. Most of the solutions available in the literature model the correlation noise (CN) between the 

original frame and its estimation made at the decoder, which is the so-called side information (SI), by a given 

distribution whose relevant parameters are estimated using an offline process, assuming that the SI is available 

at the encoder or the originals are available at the decoder. The major goal of this paper is to propose a more 

realistic WZ video coding approach by performing online estimation of the CN model parameters at the 

decoder, for transform domain WZ video codecs. In this context, several new techniques are proposed based on 

metrics which explore the temporal correlation between frames with different levels of granularity. For 

transform-domain WZ (TDWZ) video coding, DCT bands and coefficients are the two granularity levels 

proposed. The higher the estimation granularity is, the better the rate-distortion performance is since the deeper 

the adaptation of the decoding process is to the video statistical characteristics, which means that coefficient 

levels are the best performing for TDWZ solutions. 

Keywords: Correlation model, distributed video coding (DVC), online estimation, pixel domain, transform 

domain, Wyner–Ziv (WZ) video coding. 

 

1.  Introduction 

      In typical video coding applications, e.g., broadcasting or video streaming, the video codec relies on the 

powerful hybrid block-based motion compensation and DCT transform architecture which was primarily driven 

by the one-to-many model with a single complex encoder and multiple light decoders. The complexity burden of 

the encoder (which is typically 5–10 times higher than the decoder [1]) is mainly associated with the motion 

estimation task, which is primarily responsible for the high rate-distortion (RD) performance achieved. 

However, this architecture is being challenged by several emerging applications such as wireless video 

surveillance, multimedia sensor networks, wireless PC cameras, and mobile camera phones. These applications 

have different requirements from those targeted by more traditional video delivery systems, e.g., in wireless 

video surveillance systems, low-cost encoders, or codecs, allowing a flexible allocation of complexity between 

the encoder and decoder are important since there is a high number of encoders and only one or few decoders. 

Distributed video coding (DVC) fits well these emerging scenarios since it enables the exploitation of the video 

statistics, partially or totally, at the decoder only and allows to make the encoder more or less intelligent and 

thus complex. A flexible allocation of complexity between the encoder and the decoder is therefore enabled by 

the DVC paradigm. From the Information Theory, the Slepian–Wolf Theorem [2] states that it is possible to 

compress two statistically dependent discrete random sequences and that are independently and identically 

distributed  in a distributed way (separate encoding and joint decoding) using a rate similar to that used in a 

system where the sequences are encoded and decoded together, i.e., like in  traditional video coding schemes. 

The extension of Slepian–Wolf coding for lossy compression is well known as Wyner–Ziv(WZ) coding [3], 

which deals with the lossy source coding of when some side information is available only at the decoder. In [3], 

Wyner and Ziv show that there is no increase in the transmission rate if the statistical dependency between and 

is only explored at the decoder compared with the case where it is explored both at the decoder and the encoder, 

notably, if and are jointly Gaussian and a mean-square error distortion measure is considered. The side 

information is usually interpreted as an attempt made by the decoder to estimate the original frame to be WZ 

encoded. In the WZ coding scenario, error correcting codes are typically used to improve the quality of the side 

information until a target quality for the final decoded frame is achieved. Two of the most interesting DVC 
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approaches are the pixel- and transform-domain turbo coding-based WZ video coding schemes presented in [4], 

where the decoder is responsible for exploring all (or most of) the source statistics and, therefore, to achieve 

compression following the WZ coding paradigm; the schemes presented in [4] make use of a feedback channel 

to perform rate control at the decoder. While the pixel-domain (PD) codec is simpler (in terms of complexity), 

the trans- form-domain (TD) codec provides better RD performance (at the cost of a slightly higher coding 

complexity.  

2.  WZ Video Codecs 

Fig. 1 illustrates the architecture of the TDWZ video codec proposed in [11] and that will be used in this paper; 

this codec is an improved TDWZ video coding solution which basically follows the same architecture as the one 

proposed by Aaron et al. in [7]. However, the solution adopted here brings some major advances regarding the 

coding solution in [7], namely in the DCT transform, the quantizer, and the frame interpolation (FI) modules. 

The main differences are in the key frames codec, the quantizer, the turbo decoder, the frame interpolation, and 

the correlation noise modeling modules. • The key frames are Intra coded with a H.264/AVC codec since it is a 

very efficient coding solution. • In terms of AC coefficients quantization, it is proposed here to have quantized 

bins evenly distributed around zero in- stead of an unbalanced AC quantization approach used so far, e.g., as in 

[11]. By doing this, one bin of the current quantization approach is suppressed and the central (zero) bin is 

doubled in size, maintaining the remaining bins size. Since most of the AC coefficients are concentrated around 

zero, by doubling the zero bin size, the matching probability between corresponding quantized bits of the WZ 

and SI frames increases bringing bit rate savings. Some distortion loss is, however, expected since the bigger the 

quantization bin, the worst the decoded frame quality is, but overall the RD performance improves. •  

3.  Correlation Noise Model in WZ Video Coding 

             To make good usage of the SI obtained through the FI framework, the decoder needs to have a reliable 

knowledge of the model that characterizes the correlation noise between the original WZ frame and the 

corresponding SI frame. The correlation noise can be interpreted as a virtual channel with an error pattern 

characterized by some statistical distribution (or model) since SI may be seen as a “corrupted” version of the 

original information. In the TD scenario, to the residual between corresponding DCT bands of the WZ and SI 

frames. If the model accurately describes , the coding efficiency may be higher; however, if the model fails, a 

coding efficiency loss will be observed. In the context of Fig. 1, this would correspond to less accurate data at 

the input of the turbo decoder (SISO de- coders) which would make the turbo decoder to spend more parity bits 

to correct the same amount of errors; the data at the SISO decoders input/output is called soft information, i.e., 

confidence information (e.g., probabilities) from which it is possible to make a decision about an event.   

  

Fig. 1 

p[WZ(x, y) − SI(x, y)] =
α

2
exp[𝛼|𝑊𝑍(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)|]                         (1) 

to model the residual between the original WZ frame and the corresponding SI frame. In (1), is the probability 

density function, is the position to be evaluated within the WZ and SI frames, and is the Laplacian distribution 

parameter is defined as    𝛼 = √
2

𝜎2         (2)                                                                                  

can vary along time (e.g., different values for each frame) and space(e.g., different values for each pixel within a 

frame), as will be shown in Sections IV–VII. In (2), is the variance of the residual.  
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4. Offline Transform-Domains Correlation Noise Modeling 

The TDWZ video codec exploits the spatial redundancy within a frame by applying a DCT transform over the 

frame blocks; therefore, instead of pixel values, DCT transform coif- cents are quantized and turbo coded Since 

DCT coefficients are turbo coded, the noise distribution to be taken into account regards the residual between 

corresponding DCT bands of the WZ and the corresponding SI frames. Based on previous work, the authors use 

a Laplacian distribution as in  [1] to model the statistical correlation between corresponding DCT bands of the 

original WZ and the corresponding SI frames. Following the same coarse to fine strategy as adopted for the 

PDWZ codec to offline calculate the parameter, three granularity modeling levels are proposed in the following: 

DCT band/sequence level, DCT band/frame level and coefficient/frame level.  

4.1   Correlation Noise Model at DCT Band/Frame Level 

Step-1 Compute first the residual frame between the WZ frame and the corresponding SI frame as  

R(x, y)  = WZ (x, y) - SI(x, y)                        (3) 

Step-2   Apply a 4 x4 block-based discrete cosine transform over the residual frame to obtain the DCT 

coefficients frame T 

T(u, v) = DCT [R(x, y)].                                 (4) 

Step-3   Compute the R frame variance. We know, the variance of a random variable Z can be computed using             

𝜎𝑧 = 𝐸[ 𝑧2] – (E[ z])2                                    (5)                                                             

Where E [.] is the expectation operator. So for our case the T frame DCT band b coefficient variance 

computation, 

E[Z2] and E[Z] corresponds Eb[Tb
2] and Eb[Tb] respectively. 

𝐸𝑏[ 𝑇𝑏  ] =
1

𝐽 ∑ 𝑇𝑏(𝑗) ]𝐽
𝑗=1

                

𝐸𝑏[ 𝑇𝑏
2  ] =

1

𝐽 ∑ 𝑇𝑏(𝑗) ]𝐽
𝑗=1

 

Tb  represents all of the DCT coefficients of T frame band b and J stands for the DCT band size; the DCT band 

size is given by the ratio between the frame size and the number of different DCT coefficients bands.  

Step -4  Compute the DCT-band b variance for a certain WZ frame via 

      𝜎𝑏
2 =𝐸𝑏[𝑇𝑏

2] -(𝐸𝑏[𝑇𝑏])²                         (6)                                                                

Step -5 Compute the DCT band 𝛼value using    𝛼𝑏 = √
2

𝜎𝑏
2              (7)                                                                                                           

Despite this computation process being more efficient (in terms of RD performance) than the one described in 

Section V-A, due to the exploitation of the (varying) temporal correlation, the offline computation procedure 

can be even more efficient by also exploring the (varying) spatial correlation 

 

4.2   Correlation Noise Model at Coefficient/Frame Level 

Step 1 Compute first the residual frame between the WZ frame and the corresponding SI frame as  

    R(x, y) = WZ (x, y) - SI(x, y)                   (8)                       

Step 2 Apply a 4 x4 block-based discrete cosine transform over the residual frame to obtain the DCT 

coefficients frame T 

            T(u, v) = DCT [R(x, y)].                                                          (9)  

 



Int. J. of Intelligent Computing and Applied Sciences   45 
 

 Copyright©2013  DRIEMS                                                          ISSN (Print) : 2322-0031 , Vol. 5, Issue 1, 2017 

 
 

5.  Online Transform 

Domain Correlation Noise Modeling 

It was used a Laplacian distribution to model the correlation noise in the TDWZ video coding context where the 

Laplacian distribution parameter α is estimated offline at the encoder and at the DCT band level, i.e., each DCT 

band has a (constant) value associated. This offline process is not acceptable and realistic because it requires the 

encoder to replicate the side information. Following an approach similar to the one proposed for the PDWZ 

video codec, two novel online Laplacian distribution parameter estimation techniques, which work at the 

decoder at two different granularity levels are proposed for the TDWZ video codec: the DCT band/frame level 

and the coefficient/frame level. In the DCT band/frame-level approach, one value is estimated for each DCT 

band. 
 

5.2   Correlation Noise Estimation at DCT Band /Frame Level 

Step 1 - Residual frame generation: Compute first the residual frame between R the motion compensated 

versions of the frames𝑋𝐵 and 𝑋𝐹as follows: 

R(x,y) =   
𝑋𝐹(𝑥+𝑑𝑥𝑓  ,𝑦+𝑑𝑦𝑓)−𝑋𝐵(𝑥+𝑑𝑥𝑏  ,𝑦+𝑑𝑦𝑏)

2
              (10) 

where  𝑋𝐵(𝑥 + 𝑑𝑥𝑓   , 𝑦 + 𝑑𝑦𝑓)𝑎𝑛𝑑𝑋𝐹(𝑥 + 𝑑𝑥𝑏  , 𝑦 + 𝑑𝑦𝑏) and represent the backward and the forward 

motion- compensated frames, respectively, and (x,y) corresponds to the pixel location in the frame R. 

(𝑑𝑥𝑓 , 𝑑𝑦𝑓) and(𝑑𝑥𝑏,𝑑𝑦𝑏)and represent the motion vectors for the and frames𝑋𝐹 and 𝑋𝐵, respectively 

Step 2 - R frame kth block variance computation: Compute the residual frame th block variance using       

            𝜎𝑅𝑘
2 =  𝐸𝑅𝑘

[𝑅𝐾(𝑥, 𝑦)2] -  (𝐸𝑅𝑘
[𝑅𝑘(𝑥, 𝑦)])2                              (11) 

Step 3 |T| frame generation: Compute the |T| frame whose elements are the absolute value of the 

corresponding elements in the |T| frame 

Step 4 -  |T| frame DCT band variance computation, :Compute the DCT band variance using equation  (6) 

Step 5 -  DCT band parameter estimation, : Estimate the parameter for each DCT band using equation (7). 

 
5.3    Correlation Noise Estimation at Coefficient/Frame Level 

 

    In the coefficient/frame-level approach, an online adaptation of the Laplacian distribution parameter both 

temporally, i.e., along the video sequence, and spatially, i.e., for each DCT coefficient inside the DCT 

coefficients frame, is performed. Basically, the DCT coefficient is classified into one of two classes: (1) inlier 

coefficient and (2) outlier coefficient: the inlier coefficients are those whose value is close to the corresponding 

DCT band average value and the outlier coefficients are those whose value is far away from . In order to 

determine how close a certain coefficient is to the corresponding DCT band average value, it is proposed here to 

compare the distance between that coefficient and with the DCT band variance because the variance is a 

measure of how spread the coefficient values are regarding its average value. The coefficient/frame level 

correlation noise estimation technique is described in the following 

Step -1 Residual frame generation: Compute first the residual frame between R the motion compensated 

versions of the frames𝑋𝐵 and 𝑋𝐹as follows: 

R(x,y) = 
𝑋𝐹(𝑥+𝑑𝑥𝑓  ,𝑦+𝑑𝑦𝑓)−𝑋𝐵(𝑥+𝑑𝑥𝑏  ,𝑦+𝑑𝑦𝑏)

2
    (12) 

Where 𝑋𝐵(𝑥 + 𝑑𝑥𝑓   , 𝑦 + 𝑑𝑦𝑓)𝑎𝑛𝑑𝑋𝐹(𝑥 + 𝑑𝑥𝑏  , 𝑦 + 𝑑𝑦𝑏) represent the backward and the forward motion- 

compensated frames, respectively, and (x,y) corresponds to the pixel location in frame R. 

(dxf,dyf) and (dxb,dyb) represents the motion vector for the frames XF and XB respectively. 



Int. J. of Intelligent Computing and Applied Sciences   46 
 

 Copyright©2013  DRIEMS                                                          ISSN (Print) : 2322-0031 , Vol. 5, Issue 1, 2017 

 
 

Step-2  R frame kth block variance computation: Compute the residual frame kth block variance using                               

𝜎𝑅𝑘
2 =  𝐸𝑅𝑘

[𝑅𝐾(𝑥, 𝑦)2] -  (𝐸𝑅𝑘
[𝑅𝑘(𝑥, 𝑦)])2                                                  [13] 

Step-3    |T| frame generation: Compute the |T| frame whose elements are the absolute value of the 

corresponding elements in the |T| frame 

Step-4 |T| frame DCT band variance computation, :Compute the DCT band variance using (6) 

 

Step 5 |T|  frame (u,v)DCT coefficient distance computation: Compute, for the|T|  frame DCT band b , the 

distance D(u,v) between the coefficient and the |T|  frame DCT band b  average value μ, , using(26) where 

represents the DCT coefficient at the position of the frame DCT band . 

D(u,v) = |T| (u,v)- μ, 

Where   |T| (u,v)-  represents the DCT coefficient at the (u,v)position of the frame |T| DCT band b  

 

Step -6 DCT coefficient parameter estimation, Estimate the parameter for the DCT coefficient . 

 

 
6.  Performance Analysis 

RD PERFORMANCE FOR OFFLINE MODEL 

 

Fig.2 

7.  RD Performance for Onnline Model 

 

Fig. 3 
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8. Conclusion 

This paper addresses a key issue in turbo-based WZ video coding: the correlation noise modeling. The 

techniques pro- posed in this paper, for both pixel and transform domains, alleviate the encoder from the high 

computational and cumbersome task of replicating the side information and allow the decoder to perform online 

estimation of the CNM parameters. These methods enable practical WZ video coding solutions where the 

encoder really has low complexity. This paper proposes both offline (encoder-generated) and online (decoder-

generated) techniques, which work at different gran- ularity levels, to estimate the CNM. Experimental results 

show that better RD performance is achieved for the lowest granularity level, the pixel level for the PD solution, 

and the DCT coefficient/frame level for the TD solution, since both temporal and spatial correlation are explored 

at the deepest granularity. In a general way, comparing the online correlation noise estimation methods proposed 

in this paper with the offline equivalent ones, allows to conclude that there is a small coding loss justified by the 

fact that the offline methods use the original WZ data (which is in practice not viable). One of the next research 

challenges will be to combine the online estimation techniques proposed here with information about the spatial 

coherence of each block in its neighborhood within the side information to improve the RD performance. 

Another challenge will consist on extending these techniques to a multiview scenario where multiple correlated 

views are available, and thus where interview, temporal and spatial correlations should be exploited to estimate 

the CNM parameters. 
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